Engineering Notes.net

Deriving the Bernoulli Equation

Take an infinitesimally small fluid particle moving along a pathline:

Resolving Tangential Forces

There are three forces acting on the fluid particle:

- 1. Gravity
- 2. Pressure
- 3. Viscous Force We neglect this one, as we assume inviscid flow

The gravitational force is given as:

$$F_G = mg$$
$$m = \rho v$$

$$v = \delta s \delta A$$

$$F_G = \rho g \delta s \delta A$$

The pressure forces are only taken on the left and right side – it is assumed that the pressure forces around the curved surface will cancel:

$$F = PA$$

$$F_{left} = p(s)\delta A$$

$$F_{right} = p(s + \delta s)\delta A$$

Defining p(s) as p, $p(s + \delta s) = p + \delta s \frac{dp}{ds}$

Therefore, the sum of the tangential components:

$$\sum\nolimits_{\overrightarrow{e_t}} F = F_{left} - F_{right} - F_G cos\theta$$

$$\sum\nolimits_{\overrightarrow{e_t}} F = p\delta A - \left(p + \delta s \frac{dp}{ds}\right) \delta A - \rho g \delta s \delta A \cos \theta$$

To find the angle, $cos\theta$:

$$\delta z = \delta s \cos \theta$$

$$\cos \theta = \frac{dz}{ds}$$

$$\delta z = \delta s \frac{dz}{ds}$$

Therefore:

$$\sum_{\overrightarrow{e_r}} F = p\delta A - \left(p + \delta s \frac{dp}{ds}\right) \delta A - \rho g \delta s \delta A \frac{dz}{ds}$$

Finding Acceleration

The particle is travelling with velocity \vec{u} . This is given as a function of s only, not t, as the flow is steady:

$$u = u(s) = \frac{ds}{dt}$$

Using the chain rule:

$$a = \frac{du(s)}{dt} = \frac{du}{ds}\frac{ds}{dt}$$
$$a = u\frac{du}{ds}$$

Applying Newton's Second Law

Now that we know the forces, mass and acceleration:

$$F = ma$$

$$p\delta A - \left(p + \delta s \frac{dp}{ds}\right) \delta A - \rho g \delta s \delta A \frac{dz}{ds} = \rho \delta s \delta A u \frac{du}{ds}$$

$$p - \left(p + \delta s \frac{dp}{ds}\right) - \rho g \delta s \frac{dz}{ds} = \rho \delta s u \frac{du}{ds}$$

$$-\delta s \frac{dp}{ds} - \rho g \delta s \frac{dz}{ds} = \rho \delta s u \frac{du}{ds}$$

$$-\frac{dp}{ds} - \rho g \frac{dz}{ds} = \rho u \frac{du}{ds}$$

If we integrate the term on the right-hand side:

$$\rho u \frac{du}{ds} = \rho \frac{d}{ds} (u \, du) = \rho \frac{d}{ds} \left(\frac{1}{2} u^2 \right)$$
$$- \frac{dp}{ds} - \rho g \frac{dz}{ds} = \rho \frac{d}{ds} \left(\frac{1}{2} u^2 \right)$$

Now if we assume all the density values are constant, we can divide by density:

$$-\frac{1}{\rho}\frac{dp}{ds} - g\frac{dz}{ds} = \frac{d}{ds}\left(\frac{1}{2}u^2\right)$$

Rearranging:

$$\frac{1}{\rho}\frac{dp}{ds} + \frac{d}{ds}\left(\frac{1}{2}u^2\right) + g\frac{dz}{ds} = 0$$

$$\frac{d}{ds}\left(\frac{p}{\rho} + \frac{1}{2}u^2 + gz\right) = 0$$

Integrating with respect to s gives rise to the Bernoulli constant:

$$\frac{p}{\rho} + \frac{1}{2}u^2 + gz = c$$

And there you have it. The Bernoulli Equation.

Return to notes