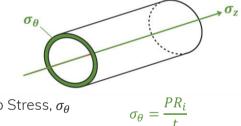
Engineering Notes.net

Structures Key Equations

Statical Determinacy


b + n < 2jMechanism May be determinate b+n=2jIndeterminate b + n > 2j

- *b* is the number of bars •
- *n* is the number of reactions •
- *j* the number of pins •

Stress & Strain

Engineering Stress	$\sigma = \frac{F}{A}$
Engineering Strain	$\varepsilon = \frac{x}{L}$
Youngs Modulus	$E = \frac{\sigma}{\varepsilon}$
Poisson's Ratio	$\varepsilon_y = \varepsilon_z = -\nu \varepsilon_x$
Hydrostatic Stress	$\sigma_H = \sigma_x = \sigma_y = \sigma_z$

Cylindrical Thin-Walled Pressure Vessels

 $\sigma_z = \frac{\sigma_\theta}{2} = \frac{PR_i}{2t}$

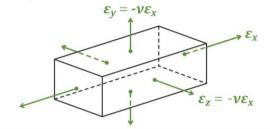
 $\varepsilon_z = \frac{\Delta L}{L}$

 $\varepsilon_{\theta} = \frac{\Delta r}{r}$

 $\varepsilon_V = \frac{\Delta V}{V} = 2\varepsilon_\theta + \varepsilon_z$

Hoop Stress, σ_{θ}

Axial Stress, σ_{τ}


Axial strain, ε_z

Hoop strain, ε_{θ}

Volumetric Strain

$$\varepsilon_{z} = \frac{1}{E} (\sigma_{z} - \nu(\sigma_{\theta} + \sigma_{r})) + \alpha \Delta T$$
$$\varepsilon_{\theta} = \frac{1}{E} (\sigma_{\theta} - \nu(\sigma_{r} + \sigma_{z})) + \alpha \Delta T$$
$$\varepsilon_{r} = \frac{1}{E} (\sigma_{r} - \nu(\sigma_{\theta} + \sigma_{z})) + \alpha \Delta T$$

Rectangular Cross-Sections

 $K = \frac{\sigma_H}{\sigma_H}$

Change in Volume Volumetric Strain

 $\Delta V = \varepsilon_V \times V$ $\varepsilon_V = \frac{\Delta V}{V} = \varepsilon_x + \varepsilon_y + \varepsilon_z$

Bulk Modulus

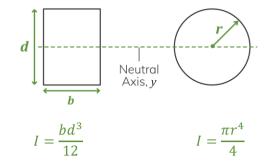
$$\varepsilon_{V}$$

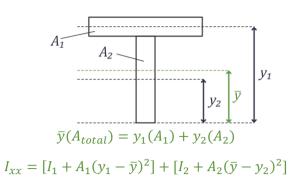
$$\varepsilon_{x} = \frac{1}{E} \left(\sigma_{x} - \nu (\sigma_{y} + \sigma_{z}) \right) + \alpha \Delta T$$

$$\varepsilon_{y} = \frac{1}{E} \left(\sigma_{y} - \nu (\sigma_{x} + \sigma_{z}) \right) + \alpha \Delta T$$

$$\varepsilon_{z} = \frac{1}{E} \left(\sigma_{z} - \nu (\sigma_{x} + \sigma_{y}) \right) + \alpha \Delta T$$

Spherical Thin-Walled Pressure Vessels




Hoop Stresses, σ_{θ} , $\sigma_{\phi} = \sigma_{\phi} = \frac{PR_i}{2t}$ Hoop Strains, ε_{θ} , σ_{ϕ} $\varepsilon_{\theta} = \varepsilon_{\phi} = \frac{\Delta r}{r}$ $\varepsilon_V = \frac{\Delta V}{V} = 3\varepsilon_{\theta}$ Volumetric Strain $\varepsilon_{\theta} = \frac{1}{E} \Big(\sigma_{\theta} - \nu \big(\sigma_{r} + \sigma_{\phi} \big) \Big) + \alpha \Delta T$ $1 \left(\frac{1}{\sigma} + \frac{1}{\sigma} \right) + \alpha \Delta T$

$$\varepsilon_{\phi} = \frac{1}{E} \left(\sigma_{\phi} - \nu (\sigma_r + \sigma_{\theta}) \right) + \alpha \Delta T$$
$$\varepsilon_r = \frac{1}{E} \left(\sigma_r - \nu (\sigma_{\theta} + \sigma_{\phi}) \right) + \alpha \Delta T$$

- Take radial stresses and strains as zero in both spheres and cylinders.
- Axial strain in a sphere is also zero.

Second Moment of Area

Slope Angle Deflection

$$\frac{dv}{dx} = \frac{1}{EI} \int M \, dx$$
$$v = \frac{1}{EI} \iint M \, dx$$

Torsional Stiffness, K_T $K_T = \frac{T}{\theta} = \frac{JG}{L}$ $\frac{1}{K_{T,total}} = \frac{1}{K_{T1}} + \frac{1}{K_{T2}} \dots$

Key Relation

Radius & Moment

Beam Theory

 $\frac{\sigma}{y} = \frac{M}{I} = \frac{E}{R}$ $R = \frac{d^2v}{dx^2} = \frac{1}{EI}M$

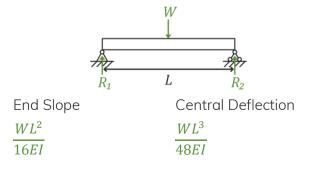
Torsion in Thin-Walled Shafts

Key Relation	$\frac{\tau}{r} = \frac{T}{I} = \frac{G\theta}{L}$
Shear Stress & Strain	$\gamma = \frac{\tau}{G}$
Shear Modulus	$G = \frac{E}{2(1+\nu)}$

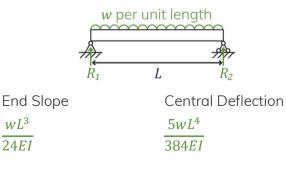
Torsion in Thin-Walled Shafts

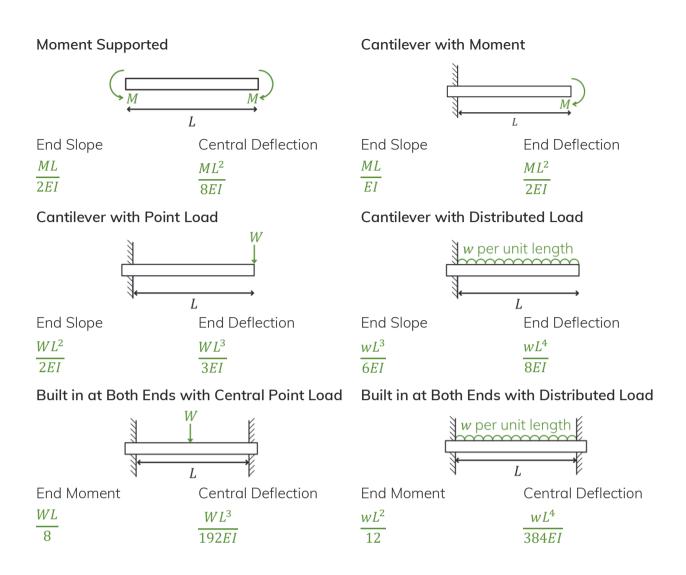
Shear Stress

Shear Strain


$$\gamma = \frac{GR_0}{L}$$
$$\tau = \frac{GR_0\theta}{L}$$
$$\tau = \frac{T}{2\pi R_0^2 t}$$

Torsion in Solid & Hollow Shafts


Shear Strain	$\gamma(r) = \frac{r\theta}{L}$
Shear Stress	$\tau = \frac{Gr\theta}{L}$
Torque	$T = \frac{G\theta J}{L}$
2 nd Polar Moment of Area	$J = \frac{\pi D^4}{32}$


Standard Slope & Deflection of Beams

Simply Supported with Point Mass

Simply Supported with Distributed Load

