Engineering

Mechanics Key Equations

Forces & Moments as Vectors

The magnitude of a moment about a point *P* in scalar form:

$|\boldsymbol{M}_P| = |\boldsymbol{F}|D$

In vector form, this is given as the cross product of the position and force vectors:

 $\boldsymbol{M}_{\boldsymbol{P}} = \boldsymbol{r} \times \boldsymbol{F} \qquad |\boldsymbol{M}_{\boldsymbol{P}}| = |\boldsymbol{r} \times \boldsymbol{F}|$

Rectilinear Kinematics of Particles

The SUVAT equations for constant, linear acceleration:

$$v = u + at$$
$$v^2 = u^2 + 2as$$

 $s = ut + \frac{1}{2}at^2$

$$s = vt - \frac{1}{2}at^{s}$$

$$s = \frac{1}{2}(u+v)t$$

Integral relations:

Moments about a line:

$$\boldsymbol{M}_L = (\hat{\boldsymbol{e}} \cdot \boldsymbol{r} \times \boldsymbol{F}) \, \hat{\boldsymbol{e}}$$

 $\boldsymbol{M}_L = (\boldsymbol{\hat{e}} \boldsymbol{.} \boldsymbol{M}_P) \boldsymbol{\hat{e}}$

In both cases, the direction and sign of the moments are given by the right-hand rule.

Curvilinear Kinematics of Particles

Angular velocity & acceleration:

$$\omega = \dot{\theta} = \frac{d\theta}{dt}$$

$$\alpha = \ddot{\theta} = \frac{d^2\theta}{dt} = \frac{d\omega}{dt}$$

Unit conversion: $rad/s = RPM \times \frac{\pi}{30}$

Velocity is tangential:

$$v = r\omega$$
 $v = v \hat{e}_t = r\omega \hat{e}_t$

Acceleration has both components:

$$a = r\alpha$$
 $\mathbf{a} = a \, \hat{\mathbf{e}}_t + v\omega \, \hat{\mathbf{e}}_n = a \, \hat{\mathbf{e}}_t + \frac{v^2}{r} \, \hat{\mathbf{e}}_n$

For Circular motion:

 $v = R\omega$ $v = R\omega \hat{e}_t$ $a = R\alpha$ $a = R\alpha \hat{e}_t + \frac{v^2}{R} \hat{e}_n$

In Polar Coordinates:

$$\mathbf{v} = \dot{r} \, \hat{\mathbf{e}}_r + r \dot{ heta} \, \hat{\mathbf{e}}_{\theta}$$

 $\mathbf{a} = (\ddot{r} - r \dot{ heta}^2) \, \hat{\mathbf{e}}_r + (r \ddot{ heta} + 2 \dot{r} \dot{ heta}) \, \hat{\mathbf{e}}_{\theta}$
Where $\mathbf{r} = r \hat{\mathbf{e}}_r$

Kinematics of Rigid Bodies

Velocity of a point *P* on a rigid body:

 $\boldsymbol{v}_P = \boldsymbol{\omega} \times \boldsymbol{r}$

Relative motion:

 $v_{A/B} = \omega \times r_{A/B}$

where $a_{A/B} = a_A - a_B$

For a sliding contact at point A:

 $\boldsymbol{v}_A = \boldsymbol{v}_B + \boldsymbol{\omega} \times \boldsymbol{r}_{A/B} + \boldsymbol{v}_r$

Where $oldsymbol{v}_r$ is the velocity relative to the slot.

Friction

F is the frictional force, R the normal reaction with the surface:

 $F = \mu R$

 $\mu_s = \tan \alpha_{max}$

Acceleration of a point on a rigid body:

$a = \alpha \times r + \omega \times (\omega \times r)$

where $\boldsymbol{\alpha} \times \boldsymbol{r}$ is the tangential component and $\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{r})$ is the normal component.

For general plane motion, the normal component becomes:

$$\boldsymbol{a} = \boldsymbol{\alpha} \times \boldsymbol{r} - \omega^2 \boldsymbol{r}$$

Relative motion:

 $a_{A/B} = lpha imes r_{A/B} - \omega^2 r_{A/B}$ where $a_{A/B} = a_A - a_B$

For a sliding contact at point A:

 $\boldsymbol{a}_{A} = \boldsymbol{a}_{B} + \boldsymbol{\alpha} \times \boldsymbol{r}_{A/B} - \omega^{2} \boldsymbol{r}_{A/B} + \boldsymbol{a}_{r} + 2\boldsymbol{\omega} \times \boldsymbol{v}_{r}$

Where \boldsymbol{a}_r is the acceleration relative to the slot.

 μ_s is the static coefficient of friction (~20% > μ_k , the kinetic coefficient of friction).

 α_{max} is the friction angle – the maximum angle of inclination before the object slips:

Screw threads:

$$tan\phi = \frac{t}{\pi d_m}$$

$$W$$

$$P$$

$$F \phi$$

$$R$$

$$Tad_m$$

$$W$$

$$P$$

$$F \phi$$

$$R$$

$$Tad_m$$

Square Screw Threads:

$$P = \left(\frac{tan\phi + \mu_s}{1 - \mu_s tan\phi}\right) \times W$$

For square belts:

$$\frac{T_1}{T_2} = e^{\mu_S \alpha}$$

Where μ_s is the static coefficient of friction, and α the wrap angle.

Clutches

For uniform pressure:

$$F = \pi p (R_1^2 - R_2^2)$$
$$T = \frac{2}{3} \mu F \left(\frac{R_1^3 - R_2^3}{R_1^2 - R_2^2} \right)$$

For v-threads:

$$P = \left(\frac{\tan\phi + \mu_s \sec\beta}{1 - \mu_s \sec\beta \tan\phi}\right) \times W$$

For v-shaped belts:

 $\frac{T_1}{T_2} = e^{\frac{\mu_s \alpha}{\sin \gamma}}$

Where γ is the angle of the v-section.

For uniform wear:

$$T = \mu F\left(\frac{R_1 + R_2}{2}\right)$$