|Engineering
 Notes.net

Mechanics Key Equations

Forces \& Moments as Vectors

The magnitude of a moment about a point P in scalar form:
$\left|\boldsymbol{M}_{P}\right|=|\boldsymbol{F}| D$

In vector form, this is given as the cross product of the position and force vectors:
$\boldsymbol{M}_{P}=\boldsymbol{r} \times \boldsymbol{F} \quad \quad\left|\boldsymbol{M}_{P}\right|=|\boldsymbol{r} \times \boldsymbol{F}|$

Rectilinear Kinematics of Particles

The SUVAT equations for constant, linear acceleration:
$v=u+a t$
$v^{2}=u^{2}+2 a s$
$s=u t+\frac{1}{2} a t^{2}$
$s=v t-\frac{1}{2} a t^{s}$
$s=\frac{1}{2}(u+v) t$
Integral relations:

Moments about a line:
$\boldsymbol{M}_{L}=(\hat{\boldsymbol{e}} . \boldsymbol{r} \times \boldsymbol{F}) \hat{\boldsymbol{e}}$
$\boldsymbol{M}_{L}=\left(\hat{\boldsymbol{e}} . \boldsymbol{M}_{P}\right) \hat{\boldsymbol{e}}$
In both cases, the direction and sign of the moments are given by the right-hand rule.

Curvilinear Kinematics of Particles

Angular velocity \& acceleration:
$\omega=\dot{\theta}=\frac{d \theta}{d t}$
$\alpha=\ddot{\theta}=\frac{d^{2} \theta}{d t}=\frac{d \omega}{d t}$
Unit conversion: $\mathrm{rad} / \mathrm{s}=R P M \times \frac{\pi}{30}$
Velocity is tangential:
$v=r \omega \quad v=v \hat{\boldsymbol{e}}_{t}=r \omega \hat{\boldsymbol{e}}_{t}$
Acceleration has both components:
$a=r \alpha$

For Circular motion:
$v=R \omega$
$v=R \omega \hat{\boldsymbol{e}}_{\boldsymbol{t}}$
$a=R \alpha$

$$
\boldsymbol{a}=R \alpha \hat{\boldsymbol{e}}_{\boldsymbol{t}}+\frac{v^{2}}{R} \hat{\boldsymbol{e}}_{n}
$$

Kinematics of Rigid Bodies

Velocity of a point P on a rigid body:
$\boldsymbol{v}_{P}=\omega \times r$
Relative motion:
$v_{A / B}=\omega \times r_{A / B}$
where $\boldsymbol{a}_{A / B}=\boldsymbol{a}_{A}-\boldsymbol{a}_{\boldsymbol{B}}$
For a sliding contact at point A:
$v_{A}=v_{B}+\omega \times r_{A / B}+v_{r}$
Where \boldsymbol{v}_{r} is the velocity relative to the slot.

In Polar Coordinates:
$\boldsymbol{v}=\dot{r} \hat{\boldsymbol{e}}_{r}+r \dot{\theta} \hat{\boldsymbol{e}}_{\boldsymbol{\theta}}$
$\boldsymbol{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{\boldsymbol{e}}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \hat{\boldsymbol{e}}_{\boldsymbol{\theta}}$
Where $\boldsymbol{r}=r \widehat{\boldsymbol{e}}_{r}$

Acceleration of a point on a rigid body:
$\boldsymbol{a}=\boldsymbol{\alpha} \times r+\omega \times(\omega \times r)$
where $\boldsymbol{\alpha} \times \boldsymbol{r}$ is the tangential component and $\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r})$ is the normal component.

For general plane motion, the normal
component becomes:
$\boldsymbol{a}=\boldsymbol{\alpha} \times \boldsymbol{r}-\omega^{2} \boldsymbol{r}$
Relative motion:
$\boldsymbol{a}_{A / B}=\boldsymbol{\alpha} \times \boldsymbol{r}_{A / B}-\omega^{2} \boldsymbol{r}_{A / B}$
where $\boldsymbol{a}_{A / B}=\boldsymbol{a}_{\boldsymbol{A}}-\boldsymbol{a}_{\boldsymbol{B}}$
For a sliding contact at point A:
$\boldsymbol{a}_{A}=\boldsymbol{a}_{B}+\boldsymbol{\alpha} \times \boldsymbol{r}_{A / B}-\omega^{2} \boldsymbol{r}_{A / B}+\boldsymbol{a}_{r}+2 \boldsymbol{\omega} \times \boldsymbol{v}_{r}$
Where \boldsymbol{a}_{r} is the acceleration relative to the slot.
μ_{s} is the static coefficient of friction ($\sim 20 \%>$ μ_{k}, the kinetic coefficient of friction).
$\alpha_{\max }$ is the friction angle - the maximum angle of inclination before the object slips:

Screw threads:

$\tan \phi=\frac{t}{\pi d_{m}}$

Square Screw Threads:
$P=\left(\frac{\tan \phi+\mu_{s}}{1-\mu_{s} \tan \phi}\right) \times W$

Belts:

For square belts:

$\frac{T_{1}}{T_{2}}=e^{\mu_{s} \alpha}$
Where μ_{s} is the static coefficient of friction, and α the wrap angle.

Clutches

For uniform pressure:
$F=\pi p\left(R_{1}^{2}-R_{2}^{2}\right)$
$T=\frac{2}{3} \mu F\left(\frac{R_{1}^{3}-R_{2}^{3}}{R_{1}^{2}-R_{2}^{2}}\right)$

$\frac{T_{1}}{T_{2}}=e^{\frac{\mu_{s} \alpha}{\operatorname{sin\gamma }}}$
Where γ is the angle of the v-section.

For uniform wear:
$T=\mu F\left(\frac{R_{1}+R_{2}}{2}\right)$

